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Abstract 
 

One of the great challenges of putting humanoid robots 
into space is developing cognitive capabilities for the 
robots with an interface that allows human astronauts to 
collaborate with the robots as naturally and efficiently as 
they would with other astronauts.  In this joint effort with 
NASA and the entire Robonaut team we are integrating 
natural language and gesture understanding, spatial 
reasoning incorporating such features as human-robot 
perspective taking, and cognitive model-based 
understanding to achieve this high level of human-robot 
interaction. 
 
1.   Introduction 

 
As we develop and deploy advanced humanoid robots 
such as Robonaut to perform tasks in space in 
collaboration with human astronauts, we must consider 
carefully the needs and expectations of the human 
astronauts in interfacing and working with these 
humanoid robots, and to endow the robots with the 
necessary capabilities for assisting the human astronauts 
in as useful and efficient a manner as possible.  By 
building greater autonomy into the humanoid robot, the 
human burden for controlling the robot will be 
diminished and the humanoid will become a much more 
useful collaborator with a human astronaut for achieving 
mission objectives in space. 
 
In this effort we build upon our experience in designing 
multimodal human-centric interfaces and cognitive 
models for dynamically autonomous mobile robots.  We 
argue that by building human-like capabilities into 
Robonaut’s cognitive processes, we can achieve a very 
high level of interactivity and collaboration between 

human astronauts and Robonaut.  Some of the necessary 
components for this cognitive functionality addressed in 
this paper include use of cognitive architectures for 
humanoid robots, natural language and gesture 
understanding, and spatial reasoning with human-robot 
perspective-taking. 

 
2.   Cognitive Architectures for Humanoids 

 
Most of Robonaut’s activities involve interaction with 
human beings.  We base our work on the premise that 
embodied cognition, using cognitive models of human 
performance to augment a robot’s reasoning capabilities, 
facilitates human-robot interaction in two ways.  First, 
the more a robot behaves like a human being, the easier 
it will be for humans to predict and understand its 
behavior and interact with it.  Second, if humans and 
robots share at least some of their representational 
structure, communication between the two will be much 
easier.  For example, both in language use [1] and other 
cognition [2], humans use qualitative spatial 
relationships such as “up” and “north”.  It would be 
difficult for a robot using real number matrices to 
represent spatial relationships and transformations 
without also endowing it with qualitative representations 
of space.  In [3] and [4] we used cognitive models of 
human performance of the task to augment the 
capabilities of robotic systems. 
 
We have decided to use two cognitive architectures 
based on human cognition for certain high-level control 
mechanisms for Robonaut.  These cognitive architectures 
are ACT-R [5] and Polyscheme [6]. 
 
ACT-R is one of the most prominent cognitive 
architectures to have emerged in the past two decades as 
a result of the information processing revolution in the 



 

cognitive sciences.   Also called a unified theory of 
cognition, ACT-R is a relatively complete theory about 
the structure of human cognition that strives to account 
for the full range of cognitive behavior with a single, 
coherent set of mechanisms.  Its chief computational 
claims are: first, that cognition functions at two levels, 
one symbolic and the other subsymbolic; second, that 
symbolic memory has two components, one procedural 
and the other declarative; and third, that the subsymbolic 
performance of memory is an evolutionarily optimized 
response to the statistical structure of the environment. 
These theoretical claims are implemented as a 
production-system modeling environment.  The theory 
has been successfully used to account for human 
performance data in a wide variety of domains including 
memory for goals [7], human computer interaction [8], 
and scientific discovery [9].  We will use ACT-R to 
create cognitively plausible models of appropriate tasks 
for Robonaut to perform. 
 
Second, we will use Cassimatis’ Polyscheme [6] 
architecture for spatial, temporal and physical reasoning.  
The Polyscheme cognitive architecture enables multiple 
representations and algorithms (including ACT-R 
models), encapsulated in “specialists”, to be integrated 
into inference about a situation.  We will use an updated 
version of the Polyscheme implementation of a physical 
reasoner to help keep track of Robonaut’s physical 
environment. 
 
2.1. Perspective-taking 
 
One feature of human cognition that is very important for 
facilitating human-robot interaction is “perspective-
taking”. There is extensive evidence that human 
perspective-taking is an important cognitive ability even 
for young children.  In order to understand utterances 
such as “the wrench on my left”, the robot must be able 
to reason from the perspective of the speaker what “my 
left” means. We will use the Polyscheme cognitive 
architecture, integrated with an ACT-R model, to endow 
Robonaut with the ability to conceive of task-oriented 
goals and knowledge of another person.  This will allow 
Robonaut to more easily predict and explain its behavior, 
making it a better partner in a collaborative activity. 

Polyscheme has a simulation mechanism, called a 
“world”, which we will use to endow Robonaut with 
perspective-taking capabilities.  Polyscheme will allow 
Robonaut to use multiple representations to reason from 
the perspective of what it sees in its immediate 
environment.  Using worlds, Polyscheme can simulate 
the perspective it would have at other times, different 
places and in hypothetical worlds and use its specialists 
to make inferences within those perspectives.  
Polyscheme uses worlds to implement algorithms such as 

counterfactual reasoning, backtracking search, truth-
maintenance and stochastic simulation.  We will use and 
extend the world mechanism to reason about the 
perspective of other people.  This will enable 
Polyscheme to predict and explain other people’s 
behavior by using its perceptual, motor, procedural, 
memory, spatial and physical specialists from the 
perspective of another person’s mind. 

 
3.  Multimodal Interface 

 
We use a multimodal interface to process the various 
interactions with the robot.  While there are a wide 
variety and many examples of multimodal interfaces, too 
numerous to site here, there are a few multimodal 
interfaces that focus on the kinds of interactions with 
which we are concerned; namely, gestural and natural 
language modes of interaction.  For example, one 
gestural interface uses stylized gestures of arm and hand 
configurations [10] while another is limited to the use of 
gestural strokes on a PDA display [11].  Other interactive 
systems, such as [12,13], process information about the 
dialog using natural language input.  Our multimodal 
robot interface is unique in its combination of gestures 
and robust natural language understanding coupled with 
the capability of generating and understanding linguistic 
terms using spatial relations.   
 
4.  Understanding Language and Gestures  
 
Any interface which is to support collaboration between 
humans and robots must include a natural language 
component.  We currently employ a natural language 
interface that combines a ViaVoice speech recognition 
front-end with an in-house developed deep parsing 
system [14].  This gives the robot the capability to parse 
utterances, providing both syntactic representations and 
semantic interpretations.  The semantic interpretation 
subsystem is integrated with other sensor and command 
inputs through use of a command interpretation system.  
The semantic interpretation, interpreted gestures from the 
vision system, and command inputs from the computer 
or other interfaces are compared, matched and resolved 
in the command interpretation system.   
 
Using our multimodal interface (Figure 1), the human 
user can interact with a robot, using natural language and 
gestures.  The natural language component of the 
interface embodied in the Spoken Commands and 
Command Interpreter modules of the interface uses 
ViaVoice to analyze spoken utterances.  The speech 
signal is translated to a text string that is further analyzed 
by our natural language understanding system, Nautilus, 
to produce a regularized expression.  This representation 
is linked, where necessary, to gesture information via the 



 

Gesture Interpreter, Goal Tracker/Spatial Relations 
component, and Appropriateness/Need Filter, and an 
appropriate robot action or response results.  
 

Figure 1 Multimodal Interface for Robot 
Collaboration. 

 
For example, the human user can ask the robot “How 
many objects do you see?”  ViaVoice analyzes the 
speech signal, producing a text string.  Nautilus parses 
the string and produces a representation something like 
the following, simplified here for expository purposes. 
 
(ASKWH  
  (MANY N3 (:CLASS OBJECT) PLURAL) 
 (PRESENT #:V7791                                                           (1) 

 (:CLASS P-SEE)                                                    
 (:AGENT (PRON N1 (:CLASS SYSTEM) YOU))  
 (:THEME N3)))  
 

The parsed text string is mapped into a kind of semantic 
representation, shown here, in which the various verbs or 
predicates of the utterance (e.g. see) are mapped into 
corresponding semantic classes (p-see) that have 
particular argument structures (agent, theme); for 
example “you” is the agent of the p-see class of verbs in 
this domain and “objects” is the theme of this verbal 
class, represented as “N3”—a kind of co-indexed trace 
element in the theme slot of the predicate, since this 
element is fronted in English wh-questions.  If the 
spoken utterance requires a gesture for disambiguation 
(e.g. the sentence “Look over there”), the gesture 
components obtain and send the appropriate information 
to the Goal Tracker/Spatial Relations component where 
linguistic and gesture information are combined.   
 
Both natural and so-called “symbolic” gestures are input 
to the multimodal interface.  Users can gesture naturally 
by indicating directions, measurements, or specific 
locations with arm movements or they can use more 

symbolic gestures, by indicating paths and locations on a 
metric-map representation of the environment or video 
image on a PDA screen or end-user terminal (EUT). 
Users of this modality can point to locations and objects 
directly on the EUT monitor, thereby permitting the 
following kinds of utterances: “Go this way,” “Pick up 
that object/wrench,” or “Explore the area over there” 
using a real-time video display.  If the gesture — 
whatever its source — is valid, a message is sent to the 
appropriate robotics module(s) to generate the 
corresponding robot action.  If the gesture is 
inappropriate, an error message is generated to inform 
the user.  Where no gesture is required or is superfluous, 
the linguistic information maps directly to an appropriate 
robot command.  In the example above (1), no further 
gesture information is required to understand the 
question about the number of objects seen.   
 
Thus far we have been interacting with several non-
humanoid mobile robots.  As we move in the direction of 
working with humanoid robots, we believe natural 
gestures will become more prevalent in the kinds of 
interactions we study.  Gesturing is a natural part of 
human-human communication.  It disambiguates and 
provides information when no other means of 
communication is used.  For example, we have already 
discussed the disambiguating nature of a gesture 
accompanying the utterance “Look over there.”  
However, humans also gesture quite naturally and 
frequently as a non-verbal means of communicating 
information.  Thus, a human worker collaborating with 
another worker in an assembly task might look in the 
direction of a needed tool and point at it.  The co-worker 
will typically interpret this look and gesture as a 
combined non-verbal token indicating that the tool 
focused on and gestured at is needed, should be picked 
up and passed back to the first co-worker.  In terms of 
the entire communicative act, both the look and the 
gesture indicate that a specific object is indicated, and 
the context of the interaction, namely assembly work, 
dictates that the object is somehow relevant to the current 
task and should therefore be obtained and handed over.   
 
A verbal utterance might also accompany the foregoing 
non-verbal acts, such as “Get me that wrench” or simply 
“Hand me that.”  In the case of the first utterance, the 
object in the world has a location and a name.  Its 
location is indicated by the deictic gestures perceived 
(head movement, eye gaze, finger pointing, etc.), but its 
name comes solely from the linguistic utterance.  
Whether or not the term “wrench” is already known by 
the second co-worker, the latter can locate the object and 
complete the task of handing it to the first co-worker.  
Further, even if the name of the object is not part of the 
second co-worker’s lexicon, it can be inferred from the 
gestural context. Gestures have narrowed down the 



 

possibilities of what item in the world is known as a 
“wrench.”  In the case of the second utterance above, the 
name of the item is not uttered, but the item can still be 
retrieved and handed to the first co-worker.  In this case, 
if the name of the item is unknown, the second co-
worker can ask “What’s this called?” as the co-worker 
passes the requested item. 
 
We envision such interactions and behaviors as those 
outlined above as elements of possible scenarios between 
humans and Robonaut.  Thus far, in our work on a 
multimodal interface to mobile robots, we have shown 
how various modes of our interface can be used to 
facilitate communication and collaboration.  However, 
we would like to extend such capabilities to a humanoid 
robot, as well as add learning, such as learning the name 
of an object previously unknown based on contextual 
(conversational and visual) information.   
 
5.  Spatial Reasoning 
  
Building upon the existing framework of natural 
language understanding with semantic interpretation, and 
utilizing the on-board sensors for detecting objects, we 
are developing a spatial reasoning capability on the robot 
[15,16,17,18].  This spatial reasoning capability will be 
fully integrated with the natural language and gesture 
understanding modules through the use of a spatial 
modeling component based on the histogram of forces 
[19].  Force histograms are computed from a boundary 
representation of two objects (extracted from sensory 
data) to provide a qualitative model of the spatial 
relationship between the objects.  Features extracted 
from the histograms are fed into a system of rules [20] or 
used as parameters in algorithms [17] to produce 
linguistic spatial terms.  The spatial language component 
will be incorporated into the cognitive framework of the 
robot through a perspective-taking capability 
implemented using the Polyscheme architecture. 
 
5.1. Spatial Language 
 
Spatial reasoning is important not only for solving 
complex navigation tasks, but also because we as human 
operators often think in terms of the relative spatial 
positions of objects, and we use such relational linguistic 
terminology naturally in communicating with our human 
colleagues.  For example, a speaker might say, “Hand me 
the wrench on the table.” If the assistant cannot find the 
wrench, the speaker might say, “The wrench is to the left 
of the toolbox.” The assistant need not be given precise 
coordinates for the wrench but can look in the area 
specified using the spatial relational terms.  
 

In a similar manner, this type of spatial language can be 
helpful for intuitive communication with a robot in many 
situations. Relative spatial terminology can be used to 
limit a search space by focusing attention in a specified 
region, as in “Look to the left of the toolbox and find the 
wrench.”  It can be used to issue robot commands, such 
as “Pick up the wrench on the table.”  A sequential 
combination of such directives can be used to describe 
and issue a high level task, such as, “Find the toolbox on 
the table behind you. The wrench is on the table to the 
left of the toolbox.  Pick it up and bring it back to me.”  
Finally, spatial language can also be used by the robot to 
describe its environment, thereby providing a natural 
linguistic description of the environment, such as, “There 
is a wrench on the table to the left of the toolbox.”   
 
In all of these cases the spatial language increases the 
dynamic autonomy of the system by giving the human 
operator a less restrictive vernacular for communicating 
with the robot.  However, the examples above also 
assume some level of object recognition by the robot. 
Although there has been considerable research on the 
linguistics of spatial language for humans, there has been 
only limited work done in using spatial language for 
interacting with robots. Some researchers have proposed 
a framework for such an interface [21].   Moratz et al. 
[22] investigated the spatial references used by human 
users to control a mobile robot.  An interesting finding is 
that the test subjects consistently used the robot’s 
perspective when issuing directives, in spite of the 180-
degree rotation.  At first, this may seem inconsistent with 
human to human communication.  However, in human to 
human experiments, Tversky et al. observed a similar 
result and found that speakers took the listener’s 
perspective in tasks where the listener had a significantly 
higher cognitive load than the speaker [23]. 
 
To address the object recognition problem, we use the 
spatial relational language to assist in recognizing and 
labeling objects, through the use of a dialog. Once an 
object is labeled, the user can then issue additional 
commands using the spatial terms and referencing the 
named object.  An example is shown below: 
 

Human:  “How many objects do you see?”   
Robot:   “I see 4 objects.”   
Human:  “Where are they located?” 
Robot:    “There are two objects in front of me, one  
     object on my right, and one object behind  
     me.” 
Human:  “The nearest object in front of you is a  
        toolbox. Place the wrench to the left of the  
        toolbox.” 

 



 

Establishing a common frame is necessary so that it is 
clear what is meant by spatial references generated both 
by the human operator as well as by the robot. Thus, if 
the human commands the robot, “Turn left,” the robot 
must know whether the operator refers to the robot’s left 
or the operator’s left.  In a human-robot dialog, if the 
robot places a second object “just to the left of the first 
object,” is this the robot’s or the human’s left?   
 
Currently, commands using spatial references (e.g., go to 
the right of the table) assume an extrinsic reference 
frame of the object (table) and are based on the robot’s 
viewing perspective to be consistent with Grabowski’s 
“outside perspective” [24]. That is, the spatial reference 
assumes the robot is facing the referent object.   
 
There is some rationale for using the robot’s viewing 
perspective.  In human-robot experiments, Moratz et al. 
found that test subjects consistently used the robot’s 
perspective when issuing commands [22]. We are 
currently investigating this through use of human-factors 
experiments where individuals who do not know the 
spatial reasoning capabilities and limitations of the robot 
provide instructions to the robot for performing various 
tasks where spatial referencing is required.  The results 
of this study will be used to enhance the multimodal 
interface by establishing a common language for spatial 
referencing which incorporates those constructs and 
utterances most frequently used by untrained operators 
for commanding the robot.   
 
5.2. Spatial Representation 
 
In our previous work, we have used both 2D horizontal 
planes (e.g., an evidence grid map, built with range 
sensor data) and 2D vertical planes (using image data), 
but thus far they have not been combined.  For 
Robonaut, we will combine them to create a 2½D 
representation.  To achieve the type of interaction 
described above, it is not necessary to build a full 3D 
representation of the environment.  Rather, we assert that 
a more useful strategy is to obtain range information for 
a set of objects.  Human spatial language naturally 
separates the vertical and horizontal planes, e.g., the 
wrench is on the table, vs. the wrench is to the left of the 
toolbox.  Our linguistic combination utilizes both 
prepositional clauses, e.g., the wrench is on the table to 
the left of the toolbox.  Processing the spatial 
information as two (roughly) orthogonal planes provides 
a better match with human spatial language.   
 
Range information is extracted from stereo vision; the 
vision-based object recognition can assist in determining 
the correct correspondence between stereo images by 

constraining the region in the image.  We do not need to 
label everything in the scene, but only those objects or 
landmarks that provide a basis to accomplish the robot’s 
task. The position of recognized objects can be stored in 
a robot-centric frame such as the Sensory Ego Sphere 
[25]; global position information is not necessary. 
 
6. Conclusion 
 
Humanoid robots such as Robonaut offer many 
opportunities for advancing the use of robots in complex 
environments such as space, and for development of 
more effective interfaces for humans to interact with 
robots. Once a sufficiently high level of interaction 
between robots and humans is achieved, the operation of 
and interaction with these robots will become less of an 
additional burden for the humans, and more of a 
collaboration to achieve the objectives of the task-at-
hand.  In this paper we describe our plans to endow 
Robonaut with cognitive capabilities which will support 
collaboration between human astronauts and Robonaut.  
We build upon our experience in natural language 
understanding, gesture recognition, spatial reasoning and 
cognitive modeling in achieving these goals. 
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